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0 0 Si3 — 87, sin 26 514 cos 20
[S] = 0 . 0 S14cos 28 13 + S1458in 26
13+ S14sin 260 ~81,4 cos 28 0 0
—Siacos28  Siz — Sisysin26 0 0

N

Fig. 2. Schematic diagram of circular waveguide with a quadrupole dc
magnetic field.

and lower signs in the matrix (2) correspond to two directions of dc
magnetic field or two directions of propagation. When k = 1/2/2,
we have the case of a quarter wave plate.

Let us apply now to a circular gyromagnetic waveguide (Fig. 2).
Write down the matrix [S’] for the ideally matched waveguide with
the ports 1°,2’,3', and 4', lying in the antiplanes of symmetry

0 0 13 S
a0 0 S Sl
1=ls, s, 0 0

-Si4s  Sis 0 0

To find the matrix [S] for the waveguide with the ports 1, 2, 3, and
4, rotated at an angle  about the ports 1',2'. 3, and 4', consider, for
example, a wave a; in the port 1. It may be presented as a vector
sum of the two components a} and a} in the ports 1’ and 2’

al =aicosf, ab=—ajsiné.
Using the matrix relation between reflected and incident waves
[b'] = [5']la']
we have
by =153 cos @ 4+ a1 S1,sin
by =—a1Si5sinf — a1 574 cosd '
The sum of the projections of b} and b} on the port 3 is
bs = bh cosf — b sin 6.
Now we may derive the element S3;
S31 = b3 /a1 = Siz + S sin 26.

The other elements of [S] are calculated analogously. Thus, the
desired scattering matrix has the form as in the matrix shown at the
top of the page.

The elements Sis.Sa1,.S24. and Saz consist of two parts: recip-
rocal S]; and nonreciprocal S}, sin 26. The latter depends on the
angle 6.

When 573 = 0, we obtain the matrix for the quadrupole half-wave
plate

0 0 —sin26 cos26
ot 0 0 cos260 sin26
[S]= 514 sin28  —cos26 0 0o I )
—cos 260 —sin26 0 0
If |S14] = 1. it is the case of a nondissipative waveguide. With

6 =6 + /4 and Sy, = 1 the matrix (3) is transformed into the
matrix, deduced in [2] by another method.

The method is applicable to symmetrical devices with gyroelectric
media as well.
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A New Approach for Analysis of Resonant
Structures Based on the Spatial Finite-Difference’
and Temporal Differential Formulation

Zhizhang Chen and Alan Ming Keung Chan

Abstract—This paper presents a new procedure for analyzing resonant
structures using the spatial finite-difference and temporal differential for-
mulation. Unlike the conventional finite-difference time-domain methods,
the finite-difference are only enforced in the spatial domain for Maxwell’s
equations. The time-domain differentials of Maxwell’s equations are kept,
resulting in a system of first-order differential equations. In consequence,
a resonant structure problem can be formulated in the eigenvalue problem
form and resonant modes are obtained by solving the corresponding
eigenvalue problem directly. It is shown that the coefficients of the
matrix for the eigenvalue problem can be simply obtained from the finite-
difference time-domain formulation. As a result, an efficient alternative
way of using the finite-difference time-domain approach to solve the
resonant structure problems is presented. The algorithm is applied to
metallic wavegnide structures and the numerical results agree well with
those from other techniques.
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[. INTRODUCTION

Recent development of the recursive time-domain formulations,
such as the finite-difference time-domain (FDTD) method, have pre-
sented the very powerful numerical tools in solving electromagnetic
structures in time domain. They can account for very complicated
structures to which the analytical solutions are not applicable. The
theory and applications of the FDTD method and a list of extensive
reference can be found in [1].

Normally, when the conventional FDTD scheme is employed to
resonant structure problems, an excitation at a predetermined location
is imposed and the response (output) at another chosen location is
recorded for the entire simulation. Discrete Fourier transform (DFT)
is then performed on the output data to obtain the frequency response
(spectrum) and a resonant frequency is identified by observing a peak
over the frequency spectrum. If the mode distribution is required, DFT
over the whole spatial domain at the resonant frequency identified
has to be performed, or alternatively, another simulation with the
sinusoidal excitation of the resonant frequency needs to be carried
out.

The simulation processes as such have experienced the following
problems: 1) if either excitation points or output points are located
at or nearby null field points of a mode, the mode can not be well
extracted; 2) for a high-Q structure, a long iteration is required to
obtain the sufficient accuracy, resulting in the large CPU time, and
3) the CPU time and memory is independent of the number of modes
required. In this paper, we present a new procedure which circumvent
the above problems while still enable us to determine resonant modes
and their frequencies based on the time domain formulation.

II. SpATIAL FINITE-DIFFERENCE AND TEMPORAL
DIFFERENTIAL (SFDTD) FORM OF MAXWELL’S EQUATIONS

For the sake of simplicity, a stationary, lossless and sourceless
medium is assumed with the notation that the principle can be
easily extended to other cases. The Maxwell’s equations can then
be expressed as

OF 1
rra M
oOH 1

Now, if we use the Yee’s grid arrangement for approximating
the curl operation “V x™ with the central finite-differences in the
spatial domain [2] while maintaining the time-domain differentials in
Maxwell's equations, the above equations can be written as

dr
prie D\H 3)
dH
e D E (4)

where E = [+, Ex (. 1o+ 5. iys o), By ( dan iy + 50 22),
CE(tig iy i+ 3)] and B o= [e, Holtodn, iyt
cist D) Hy(tin 4 Sty e b 2)e o cHo (b 0o+ 5 Iyt
o). -]T, In other words, E and H are now the one-column
vectors whose components are the electric and magnetic field
components defined on the grid points at any arbitrary time ¢. D is
the N. X Nj coefficient matrix and D5 is the Nn X N, coefficient
matrix, resulting from the finite-difference approximation processes
in the spatial domain. N, is the total number of E nodes while Np
is the total number of H modes. Note that D; and D, are both
sparse matrices due to the localized finite-difference scheme.
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Fig. 1. Eigenvalue distributions of (a) the original problem and (b) the
transformed problem.

Since the above formulations are the result of spatially finite-
differencing Maxwell's equations without modifying the temporal
differentials, we term them the “spatial finite-difference and temporal
differential (SFDTD) formulation” of Maxwell’s equations.

By comparing the SFDTD formulations with the FDTD for-
mulations [3], one can see that the SFDTD formulation can be
considered as the limiting case of the FDTD scheme with the time
step 6t — 0. Consequently, the element values of D; and D>
can be obtained directly from the FDTD formulations by simply
excluding the coefficients which are resulted from the time-domain
finite-differences. In other words, we now present an alternative way
of using the FDTD scheme to obtain the field solutions by solving the
SFDTD equations instead of the direct simulation. As will be seen
in the next section, it avoids the problems with direct simulation
mentioned in the introduction.

Equations (3) and (4) very much resemble the transmission line
equations with only the difference that they are expressed in a matrix
form. They can be solved in a way similar to the one-dimensional
transmission line equations.

I11. SOLUTIONS OF MAXWELL’S EQUATIONS IN THE SFDTD FORM
By combining equations (3) and (4), we obtain

2

%tTE =D1D>E = D, FE 5
where D12 = Dy - Dy is an N, X N, sparse matrix. The above
equation is essentially the time-domain wave equation in the SFDTD
form. It is, however, derived directly from Maxwell’s equations and
thus it takes into account of the coupling among all the components
of E and H.

Suppose D is the N. x N. diagonal matrix with its jth diagonal
element A\, () = 1. 2,---.N.) being the jth eigenvalue of Di2. Y
is the N, x /N, modal matrix of D12, i.e., the matrix whose column
are the eigenvectors y, of Diz. The solution of the above equation
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Fig. 2. (a) Cross section of the L-shaped waveguide. (b) TM1 mode

distribution. (¢) TE3 mode distribution.

is then [3]

E = YeD%ta
= ale\/x;ty1 + ase '\Qtyz +---4an, eV )‘Net'!lNe 6)

where one column constant vector @ = [a1, d2.--.a Ne]T is deter-
mined by the initial condition of E. (Note that here we assume D12
is nondefective. If it is defective, generalized eigenvectors can be
used, albeit the above equation will be a bit more complicated.)

The above equation shows that the numerical waves in the dis-
cretized space consist of: V. eigenmodes whose amplitudes are
modulated by eV™7* with frequency of Im (v/A;). The spatial eigen-
distributions are represented by y,. They are dependent on the
configuration of the discrete system, but independent of excitations.
The initial conditions simply decide the size of each modal compo-
nents by exciting each individual eigenmode with some amplitude
ay.
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Fig. 3. (a) Cross section of the single-ridged waveguide. (b) TM1 (S) mode
distribution. (c) TE3 (A) mode distribution for half the waveguide.

It is worth to mention here that a similar solution form exists for
H . The choice for selecting E or H for solutions is rather dependent
on the personal preference. In our case, we made the choice based
on the comparison between N. and Nj. If N. < Nj, choose E. If
N, > N,, choose H. In this way, the smaller size of D;2 can be
obtained, resulting in smaller computatidn expenditure. Nevertheless,
H can be obtained from the known E and vice versa through (3)
or (4).

IV. APPLICATIONS TO RESONANT STRUCTURES

When STDFD is applied to a resonant structure, naturally,
Im (4/A;) will be the resonant frequency and eigenvector y, is
the corresponding mode distribution. As a result, to solve for a
resonant structure with SFDTD is in fact to solve an eigenvalue
problem in respect to the matrix Dj2.
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TABLE I
EIGEN-RELATIONSHIP BETWEEN THE ORIGINAL MATRIX AND THE TRANSFORMED MATRIX

Matrix Eigenvalue relationship Eigenvector
Original D, 1, 1,=1,-1y i
Transformed D, 1, Y,

TABLE 1I
COMPARISON OF THE CUTOFF WAVENUMBER k. (rad/cm) FOR THE L-SHAPED WAVEGUIDE (@ = b = 1.27 cm, c = d = a/2)

Difference between the present &
Mode SIE[8] FD-C FD-S Pre- Ama- SIE FD- FD-  Ana-

GM[9] IC[10] sent lytic CGM SIC Iytic
™, 48677 4.80  4.8949 48832 ---ee- 032% 1.73% 024% -——
™, 6.1361 6.07 6.1350 6.1383 ---—- 0.04% 1.13% 0.05% -
™, 6.9908 6.92  6.9921 6.9908 6.9967 0.00% 1.02% 0.02% 0.08%
™, 85525 8.61 8.5458 8.5475 ---—-- 0.06% 0.73% 0.02% --—-—--
™, 9.72 8.8940 8.8915 -—— @ - 8.52% 0.03% -
TE, 1.8917 1.88 1.9111 1.9158 - 1.27% 1.90% 0.25% -——
TE, 2.9159 2.95 2.9600 2.9599 - 1.51% 0.34% 0.00% -——
TE, 4.8755 4.89 49452 49441 49474 141% 1.11% 0.02% 0.04%
TE, -~ 4.9452 4.9442 4.9474 - e 0.02% 0.06%
TE; 5.2463 5.26  5.3128 5.3116 - 1.24% 0.98% 0.02% --—-—-

TABLE Il

COMPARISON OF THE CUTOFF WAVENUMBER k. (rad/cm) FOR THE SINGLE-RIDGED WAVEGUIDE (@ = 1.0 cm, b = 0.5 cm, ¢ = d = 0.25 cm)

Differences between
the present and

Mode  Type SIE[] FD-C FD- Pre- SIE FD- FD-
GM[ ] SIC[] sent CGM SIC

™, S 12.038 12.05 12.145 12145 089% 0.79% 0.00%
™, A 12294 1232 12433 12404 089% 068% 0.23%
TM, S 13.996 13.86 14.004 14014 0.12% 1.11% 0.07%
™, A 15.587 1534 15583 15591 0.03% 164% 0.05%
TM; S e 16.28 16.640 16.695 -—----- 2.55% 0.32%
TE, A 22496 2.23 22422 22537 0.18% 1.06% 0.51%
TE, S 49436 4.78 48543 48662 157% 1.80% 0.24%
TE, A 6.5189 6.40 6.4476 64608 0.89% 0.95% 0.20%
TE, S 7.5642 7.48 7.5185 7.5182 0.61% 0.51% 0.00%
TE; A e 9.71 98314 98207 - 1.14% 0.10%

To solve the eigenvalues of D2, many methods can be applied. order modes) in most cases and D1z 1s a sparse matrix, many of
Since we are more concerned about the dominant modes (lower the sparsity-based power methods can be used. In this paper, the
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simultaneous iteration (SI) technique described in [4] is used in
order to have high efficiency and computation speed. However, the
technique is only applicable to the problem where the eigenvalues
of largest-magnitude are to be found. In our case, the dominant
modes correspond to the eigenvalues of least-magnitudes as they have
the lowest resonant frequencies. Therefore, a transform is needed to
convert the eigenvalues of least-magnitude in the original problem
to the eigenvalues of largest-magnitude in another modified problem.
Inversed power method or its variations [3] may be used. However,
they involve the computation for the inversion of a large matrix (or
equivalents) which may consume a lot of CPU time. In the following
paragraph, we will describe a simple transform technique to reach
the solutions.

Suppose that the distribution of the eigenvalues can be graphically
represented as shown in Fig. 1(a). As we can see, the dominant modes
have the least-magnitude eigenvalues since

D12y, = Ny, o
then
Doy, =Ny,

where X' = A — Ax and Dy = Dy — AnI (I is the unity matrix
and N = N, or Vs). Ay is the eigenvalue of the largest-magnitude
of the original mairix D;, and can be obtained by applying the SI
technique to Djo.

The new eigenvalue (') distribution is shown in Fig. 1(b). It can
be seen that the dominant modes correspond to the new eigenvalues
which have the largest-magnitudes. The SI technique as mentioned
before can then be applied to solve the eigenvalues for the dominant
modes. Table I shows that eigenvalue relationships between the new
matrix and original matrix. Note that the transform does not change
the eigenvectors.

V. NUMERICAL RESULTS

The rectangular hollow metallic waveguide and many of its varia-
tions, such as the ridged waveguides, [5], [6], for wide bandwidth
operations, are commonly used in microwave systems [7]. Most
research on the related topics has been performed and different
techniques have been used to obtain the cutoff frequencies and
mode field distributions. The techniques include surface integral
equation (SIE) method [8], the finite-difference method coupled
with the conjugate gradient approach (FD-CGM) [9] and the finite-
difference method with the simultaneous iteration and Chebyshev
acceleration technique (FD-SIC) {10]. With the results obtained from
these techniques as references, evaluations can be made on the
accuracy of the present method. In the following examples, metallic
waveguides with rectangular boundaries (which become resonant at
the cutoff frequencies) are analyzed.

The first example is the L-shaped waveguide with ¢ = b = 1.27
cm and ¢ = d = a/2, depicted in Fig. 2(a). A 50 x 50 grid is used
to calculate a few dominant cutoff wavenumbers of the TM and TE
modes. The numerical results are shown in Table I and in Fig. 2.
Note that the cutoff wavenumber k. equals to w,/c with ¢ being the
speed of the light in the medium.

The second example is the single-ridge waveguide with ¢ = 1.0
cm, b = 0.5 cm, and ¢ = d = 0.25 cm, depicted in Fig. 3(a).
Again, a 50 x 50 grid is used to calculate a few dominant cut-off
wavenumbers of the TM and TE modes. The numerical results are
shown in Table III and in Fig. 3 where “S” and “A” in the brackets
stand for the “symmetric” and “asymmetric” modes, respectively.

From Tables IT and III, it is seen that for most of the modes in both
examples, the results from the different techniques agree well with the

discrepancies of less than 2%. Whenever the analytical solutions are
available, the errors of the present method are less than 1%. The field
distributions obtained also agree very well with the results obtained
with the other techniques [10].

VI. CONCLUSION

In this paper, a new alternative procedure of using the finite-
difference time-domain method to analyze resonant structures has
been proposed. It is based on the spatial finite-difference and tempo-
ral differential formulation of Maxwell’s equations. The solutions
are obtained in a manner very much similar to the frequency-
domain methods by solving an eigenvalue problem. Therefore, the
method becomes more efficient than the direct simulation with FDTD
method. As a result, matrix computation techniques employed in the
frequency-domain methods can be applied.
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