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N

Fig. 2. Schematic diagram of circular waveguide with a quadmpole dc

magnetic field.

and lower signs in the matrix (2) correspond to two directions of dc

magnetic field or two directions of propagation. When k = 4/2,

we have the case of a quarter wave plate.

Let us apply now to a circular gyromagnetic waveguide (Fig. 2).

Write down the matrix [S’] for the ideally matched waveguide with

the ports 1’,2’,3’, and 4’, lying in the antiplanes of symmetry

l-s:’ S(3 o 0 I

To find the matrix [S] for the waveguide with the ports 1, 2, 3, and

4, rotated at an angle $ about the ports 1’,2’,3’, and 4’, consider, for

example, a wave al in the port 1. It may be presented as a vector

sum of the two components aj and aj in the ports 1’ and 2’

aj = al cos9, a~ = —al sin9.

Using the matrix relation between reflected and incident waves

[b’] = [S’][a’]

we have

b~ =alS~3 COS6’ + alSj4 sinb’

The sum of the projections of b~ and b~ on the port 3 is

Now we may delive the element S31

SS.1= b3/a~ = S;, + s;’ sinM’.

The other elements of [S] are calculated analogously. Thus, the

desired scattering matrix has the form as in the matrix shown at the

top of the page.

The elements ~13. S31, S... and S42 consist of two parts: recip-

rocal Sj3 and nonreciprocal S{q sin %9. The latter depends on the

angle O.

When S~3 = O, we obtain the mlatrix for the quadrnpole half-wave

plate

[s] = s;’

o 0 – sin 2b’ cos 28

0 0 Cos 219 sin 20

sin 28 – cos 26 0 0

1-.0s20 -sin20 O 0

(3)

If ISjA I = 1, it is the case of a nondissipative waveguide. With

9 = # + 7r/4 and S~4 = 1 the lmatrix (3) is transformed into the

matrix, deduced in [2] by another method.

The method is applicable to symmetrical devices with gyroelectric

media as well.
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A New Approach for Analysis of Resonant

Structures Based on the Spatial Finite-Difference’

and Temporal Differential Formulation

Zhizhang Chen and Alan Ming Keung Chan

Abstract-This paper presents a new procedure for analyzing resonant
structures using the spatial finite-difference and temporat differential for-
mulation. Unlike the conventional finite-difference time-domain methods,

the finite-ditlerence are only enforced in the spatial domain for Maxwell’s
equations. The time. domain differentials of Maxwell’s equations are kept,
resulting in a system of first-order deferential equations. In consequence,
a resonant structure problem can be formulated in the eigenvalue problem
form and resonant modes arc obtained by solving the corresponding

eigenvalue problem directly. It is shown that the coefficients of the
matrix for the eigenvrdne problem can be simply obtained from tbe finite.
difference time-domain formulation. As a result, an efficient alternative
way of rising the finite-difference time-domain approach to solve the
resonant structure problems is presented. The algorithm is applied to
metallic waveguide strictures and the numericol results agree well with
those from other techniques.
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I. INTRODUCTION

Recent development of the recursive time-domain formulations,

such as the finite-difference time-domain (FDrD) method, have pre-

sented the very powerful numerical tools in solving electromagnetic

structures in time domain. They can account for very complicated

structures to which the analytical solutions are not applicable. The

theory and applications of the FDTD method and a list of extensive

reference can be found in [1].

Normally, when the conventional FDTD scheme is employed to

resonant structure problems, an excitation at a predetermined location

is imposed and the response (output) at another chosen location is

recorded for the entire simulation. Discrete Fourier transform (DFT)

is then performed on the output data to obtain the frequency response

(spectrum) and a resonant frequency is identified by observing a peak

over the frequency spectrum. If the mode distribution is required, DFT

over the whole spatial domain at the resonant frequency identified

has to be performed, or alternatively, another simulation with the

sinusoidal excitation of the resonant frequency needs to be earned

out.

The simulation processes as such have experienced the following

problems: 1) if either excitation points or output points are located

at or nearby null field points of a mode, the mode can not be well

extracted; 2) for a high-Q structure, a long iteration is required to

obtain the sufficient accuracy, resulting in the large CPU time, and

3) the CPU time and memory is independent of the number of modes

required. In this paper, we present a new procedure which circumvent

the above problems while still enable us to determine resonant modes

and their frequencies based on the time domain formulation.

II. SPATIAL FINITE-DIFFERENCE AND TEMPORAL

DIFFERENTIAL (SFDTD) FORM OF MAXWELL’s EQUATIONS

For the sake of simplicity, a stationary, IIossless and sourceless

medium is assumed with the notation that the principle can be

easily extended to other cases. The Maxwell’s equations can then

be expressed as

(1)

(2)

Now, if we use the Yee’s grid arrangement for approximating

the curl operation “V x” with the central finite-differences in the

spatial domain [2] while maintaining the time-domain differentials in

Maxwell’s equations, the above equations can be written as

dE
— = D,E
dt

dH
— = D.E
dt

(3)

(4)

where l?= [..., Ez(t,b++. iv,i.).....E.(t.iy+;yiz),z),
....E.(t.it,iv,i,+~)...]T and H =’ [“, ~~(t.~~,~g+
1>,i,+$), ....Hy(iz+z+ ;,19.Lo+*).’’’.Hz(t,tz+; ,iu+

~,,2).~~]‘. In other words, E and H are now the one-column

vectors whose components are the electric and magnetic field

components defined on the grid points at any arbitrary time t. D I is
the ,~’c x 1~’h coefficient matrix and D2 is the Nh x .Ye coefficient

matrix, resulting from the finite-difference approximation processes

in the spatial domain. N, is the total number of E nodes while hrh
is the total number of H modes. Note that Dl and D2 are both

sparse matrices due to the localized finite-difference scheme.
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Fig. 1. Eigenvalue distributions of (a) the originat problem and (b) the
transformed problem.

Since the above formulations are the result of spatially tinite-

differencing Maxwell’s equations without modifying the temporal

differentials, we term them the “spatial finite-difference and temporal

differential (SFDTD) formulation” of Maxwell’s equations.

By comparing the SFDTD formulations with the FDTD for-

mulations [3], one can see that the SFDTD formulation can be

considered as the limiting case of the FDTD scheme with the time

step & + O. Consequently, the element values of D 1 and Dz
can be obtained directly from the FDTD formulations by simply

excluding the coefficients which are resulted from the time-domain

finite-differences. In other words, we now present an alternative way

of using the FDTD scheme to obtain the field solutions by solving the

SFDTD equations instead of the direct simulation. As will be seen

in the next section, it avoids the problems with dn-ect simulation

mentioned in the introduction.

Equations (3) and (4) very much resemble the transmission line

equations with only the difference that they are expressed in a matrix

form. They can be solved in a way similar to the one-dimensional

transmission line equations.

III. SOLUTIONS OF MAXWELL’s EQUATIONS IN THE SFDTD FORM

By combining equations (3) and (4), we obtain

d2 E
— = DID2E = DIZE
dt2

(5)

where Dlz = D1 . D2 is an N, x N, sparse matrix. The above

equation is essentially the time-domain wave equation in the SFDTD

form. It is, however, derived directly from Maxwell’s equations and

thus it takes into account of the coupling among all the components

of E and H.
Suppose D is the N, x N. diagonal matrix with its I th diagonal

element AJ (~ = 1. 2, . . . . ,1’, ) being the jth eigenvalue of D I z. Y
is the .~, x N. modal matrix of D I z, i.e., the matrix whose column

are the eigenvectors YJ of D Iz. The solution of the above equation
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Fig. 2. (a) Cross section of the L-shaped waveguide. (b) TM1 mode

distribution. (c) TE3 mode distribution.

where one column constant vector a =: [al, a2, . . . . aive ] T is deter-

mined by the initkal condition of E. (Note that here we assume D12

is nondefective. If it is defective, generalized eigenvectors can be

used, albeit the above equation will be a bit more complicated.)

The above equation shows that the numerical waves in the dis-

cretized space consist ofi N, eigenrnodes whose amplitudes are

modulated by e~~’ with frequency of lm ( ~). The Spatial elgen-

distributions are represented by YJ. They are dependent on the

configuration of the dkcrete system, but independent of excitations.

The initial conditions simply decide the size of each modal compo-

nents by exciting each individual eigenmode with some amplitude

aJ.
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Fig. 3. (a) Cross section of the single-lidged waveguide. (b) TM 1 (S) mode
distribution. (c) TE3 (A) mode distribution for half the waveguide.

It is worth to mention here that ii similar solution form exists for

Il. The choice for selecting E or H for solutions is rather dependent

on the personal preference. In our case, we made the choice based

on the comparison between N, ancl Nk. If N. < Nh, choose E. If

Nh > N., choose II. In this way, the. smaller size of Dlz can be

obtained, resulting in smaller computation expenditure. Nevertheless,

H can be obtained from the known E and vice versa through (3)

or (4).

IV. APPLICATIONS TO RESONANT STRUCTURES

When STDFD is applied to ~a resonant structure, naturally,

Im ( A) will be the resonant frequency and eigenvector Vj is

the corresponding mode distribution. As a result, to solve for a

resonant structure with SFDTD is in fact to solve an eigenvalue

problem in respect to the matrix D 12.
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TABLE I
EIGEN-RELATIONSHIP BETWEEN THE ORJGINAL MATRIX AND THE TRANSFORMEDMATRIX

TABLE II
COMPARISONOF THE CUTOFF WAVJ?NUMBBRkc (met/cm) FORTHE L-SHAPED WAVEGUIDE (a = b = 1.27 cm, c = d = a/2)

Difference between the present &

Mode SIE[8] FD-[C FD-S Pre- Ana- SIE FD- FD- Ana-
GM[9] IC[1O] sent lytic CGM SIC lytic——

TM, 4.8677 4.80 4.8949 4.8832 ------ 0.32% 1.73% 0.24% -------

TM2 6.1361 6.07 6.1350 6.1383 ------ 0.04% 1.13% 0.05% -------

TM, 6.9908 6.92 6.9921 6.9908 6.9967 0.00% 1.02% 0.02% 0.08%

TM. 8.5525 8.61 8.5458 8.5475 ------ 0.06% 0.73% 0.02% -------

TM, ------- 9.72 8.8940 8.8915 ------ _______ 8.52% 0.03% -------

TE, 1.8917 1.88 1.9111 1.9158 ------ 1.27% 1.90% 0.25% ---.——

TE2 2.9159 2.95 2.9600 2.9599 ------ 1.51% 0.34% 0.00% -------

TE, 4.8755 4.89 4.9452 4.9441 4.9474 1.41% 1.11% 0.02% 0.04%

TE . ------ ______ 4.9452 4.9442 4.9474 ------- -------- 0.02% 0.06%

TE, 5.2463 5.26 5.3128 5.3116 ------- 1.24% 0.98% 0.02% --------

TABLE III
COMPARISONOFTHE CUTOFF WAVENUMBER kc (rad/cm) FORTHE SINGLE-RJDGED WAVEGUIDE (a = 1.0 cm, b = 0.5 cm, c = d = 0.25 cm)

Differences between
the presentand

Mode Type SIE[] m-c FD- Pre- SIE FD- FD-

GM[ 1 SIC[ ] sent CGM SIC

TM, s 12.038 12.05 12.145 12.145 0.89% 0.79% 0.00%

TM, A 12.294 12.32 12.433 12.404 0.89% 0.68% 0.23’%.

TM s 13.996 13.86 14.004 14.014 0.12% 1.11% 0.07~o

TM, A 15.587 15.34 15.583 15.591 0,03% 1.64% 0.05%

TM, s ------- 16.28 16,640 16.695 ------- 2,55% 0.32yo

TE, A 2.2496 2.23 2.2422 2.2537 0.18’%0 1.06°h o.51%

TE, S 4.9436 4.78 4.8543 4.8662 1.57~o 1.80% 0.24%

TE, A 6.5189 6.40 6.4476 6.4608 0.89% 0.95% 0.20%

TE, S 7.5642 7.48 7.5185 7.5182 0.61% 0.51% 0.00%

333, A ------- 9.71 9.8314 9.8207 ------- 1.14% 0.10%

To solve the eigenvalues of D] ~, many methods can be applied. order modes) in most cases and ~Iz IS a sparse matrix, many of

Since we are more concerned about the clominant modes (lower the sparsity-based power methods can be used. In this paper, the
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simultaneous iteration (S1) technique described in [4] is used in

order to have high efficiency and computation speed. However, the

technique is only applicable to the problem where the eigenvalues

of largest-magnitude are to be found. In our case, the dominant

modes correspond to the eigenvrtlues of least-magnitudes as they have

the lowest resonant frequencies. Therefore, a transform is needed to

convert the eigenv alues of least-magnitude in the original problem

to the eigenvalues of largest-magnitude in another modified problem.

Inversed power method or its variations [3] may be used. However,

they involve the computation for the inversion of a large matrix (or

equivalents) which may consume a lot of CPU time. In the following

paragraph, we will describe a simple transform technique to reach

the solutions.

Suppose that the distribution of the eigenvalues can be graphically

represented as shown in Fig. 1(a). As we can see, the dominant modes

have the least-magnitude eigenvalues since

D12YJ = ~jYj (7)

then

@2YJ = ~;YJ

where A’ = J – JN and Dj2 = D12 - ANI (I is the unity matrix

and N = N, or N~). ~IV is the eigenvalue of the largest-magnitude

of the original matrix D1 z and can be obtained by applying the S1

technique to D 12.

The new eigenvalue (,4’) distribution is shown in Fig. 1(b). It can

be seen that the dominant modes correspond to the new eigenvalues

which have the largest-magnitudes. The S1 technique as mentioned

before can then be applied to solve the eigenvalttes for the dominant

modes. Table I shows that eigenvahre relationships between the new

matrix and originai matrix, Note that the transform does not change

the eigenvectors.

V. NUMERICAL RESULTS

The rectangular hollow metallic waveguide and many of its varia-

tions, such as the ridged waveguides, [5], [6], for wide bandwidth

operations, are commonly used in microwave systems [7]. Most

research on the related topics has been performed and different

techniques have been used to obtain the cutoff frequencies and

mode field distributions. The techniques include surface integral

equation (SIE) method [8], the finite-difference method coupled
with the conjugate gradient approach (FK-CGM) [9] and the finite-

difference method with the simultaneous iteration and Chebyshev

acceleration technique (FD-SIC) [10]. With the results obtained from

these techniques as references, evaluations can be made on the

accuracy of the present method. In the following examples, metallic

waveguides with rectangular boundaries (which become resonant at

the cutoff frequencies) are analyzed.

The first example is the L-shaped waveguide with a = b = 1.27

cm and c = d = a/2, depicted in Fig. 2(a). A 50 x 50 grid is used

to calculate a few dominant cutoff wavenumbers of the TM and TE

modes, The numerical results are shown in Table II and in Fig. 2.

Note that the cutoff wavenumber k. equals to we/c with c being the

speed of the light in the medium.

The second example is the single-ridge waveguide with a = 1,0

cm, b = 0.5 cm, and c = d = 0.25 cm, depicted in Fig, 3(a).

Again, a 50 x 50 grid is used to calculate a few dominant cut-off

wavenumbers of the TM and TE modes. The numerical results are

shown in Table III and in Fig. 3 where “S” and “A” in the brackets

stand for the “symmetric” and “asymmetric” modes, respectively.

From Tables II and III, it is seen that for most of the modes in both

examples, the results from the different techniques agree well with the

discrepancies of less than 2%. Whenever the analytical solutions are

available, the errors of the present method are less than 1%. The field

distributions obtained also agree very well with the results obtained

with the other techniques [10].

VI. CONCLUSION

In this paper, a new alternative procedure of using the finite-

difference time-domain method to analyze resonant structures has

been proposed. It is based on the spatial finite-difference and tempo-

ral differential formulation of Maxwell’s equations. The solutions

are obtained in a manner very much similar to the frequency-

domain methods by solving an eigenvalue problem. Therefore, the

method becomes more efficient than the direct simulation with FDTD

method. As a result, matrix computation techniques employed in the

frequency-domain methods can be applied.
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